Löwenheim–Skolem theorem

theorem that, for any signature 𝜎, any infinite 𝜎-structure 𝑀 and any infinite cardinal 𝜅≥|𝜎|, there is a 𝜎‐structure 𝑁 of cardinality 𝜅 that is either an elementary substructure or an elementary extension of 𝑀

Wikidata entity: Q1068283



P31 instance of ... Q65943 (theorem) theorem
P6104 maintained by WikiProject ... Q8487137 (WikiProject Mathematics) WikiProject Mathematics
P138 named after ... Q77504 (Leopold Löwenheim) Leopold Löwenheim
P138 named after ... Q548080 (Thoralf Skolem) Thoralf Skolem
P361 part of ... Q944443 (list of theorems) list of theorems
P5555 schematic CommonsMedia http://commons.wikimedia.org/wiki/Special:FilePath/Lowenheim-skolem.svg ???
P2579 studied by ... Q467606 (model theory) model theory
P575 time of discovery or invention ... 1915-01-01 ???

External Ids
P1417Encyclopædia Britannica Online IDtopic/Lowenheim-Skolem-theorem
P646Freebase ID/m/01y472
P6058Larousse IDdivers/théorème_de_Löwenheim-Skolem/180573
P8313Lex IDSkolem-Löwenheims_sætning
P2812MathWorld IDLoewenheim-SkolemTheorem
P6366Microsoft Academic ID (discontinued)161856267
P9621Treccani's Enciclopedia della Matematica IDteorema-di-lowenheim-skolem

Why not click here or view trends?

log id: 5873753