Fermat's little theorem

mathematical theorem that, for any prime ๐‘, the ๐‘th power of any integer ๐‘› is congruent to ๐‘› modulo ๐‘

Wikidata entity: Q188295

Wikimedia Commons category is Fermat's little theorem



P373 Commons category String Fermat's little theorem ???
P2534 defining formula Math apa(modp) ???
P7235 in defining formula Math a ???
P7235 in defining formula Math p ???
P7235 in defining formula Math ???
P571 inception ... 1640-10-18 ???
P31 instance of ... Q65943 (theorem) theorem
P6104 maintained by WikiProject ... Q8487137 (WikiProject Mathematics) WikiProject Mathematics
P138 named after ... Q75655 (Pierre de Fermat) Pierre de Fermat
P361 part of ... Q944443 (list of theorems) list of theorems
P2579 studied by ... Q12479 (number theory) number theory
P2579 studied by ... Q319400 (modular arithmetic) modular arithmetic

External Ids
P6564Brilliant Wiki IDfermats-little-theorem
P1417Encyclopรฆdia Britannica Online IDtopic/Fermats-theorem
P646Freebase ID/m/0f06m
P2812MathWorld IDFermatsLittleTheorem
P12888Metamath statement IDfermltl
P6366Microsoft Academic ID (discontinued)54014305
P8885Namuwiki IDํŽ˜๋ฅด๋งˆ์˜ ์†Œ์ •๋ฆฌ
P6900NicoNicoPedia IDใƒ•ใ‚งใƒซใƒžใƒผใฎๅฐๅฎš็†
P691NL CR AUT IDph158529
P4215nLab IDFermat's little theorem
P10283OpenAlex IDC54014305
P6781ProofWiki IDFermat's_Little_Theorem
P9621Treccani's Enciclopedia della Matematica IDpiccolo-teorema-di-fermat

Why not click here or view trends?

log id: 6042939