symmetric group

group of bijective automorphisms of a set, also called bijective group: the group of bijections on a set (the group of all its permutations), whose group operation is function composition

Wikidata entity: Q849512



P1889 different from ... Q1412905 (permutation group) permutation group
P1889 different from ... Q902019 (symmetry group) symmetry group
P8866 has operator ... Q244761 (function composition) function composition
P2670 has part(s) of the class ... Q161519 (permutation) permutation
P31 instance of ... Q36161 (set) set
P6104 maintained by WikiProject ... Q8487137 (WikiProject Mathematics) WikiProject Mathematics
P279 subclass of ... Q60790315 (automorphism group) automorphism group
P279 subclass of ... Q5532515 (generalized symmetric group) generalized symmetric group

External Ids
P268Bibliothèque nationale de France ID12364813q
P508BNCF Thesaurus ID53097
P6564Brilliant Wiki IDsymmetry-group
P4746Elhuyar ZTH ID133764
P7554Encyclopedia of Mathematics article IDSymmetric_group
P646Freebase ID/m/074_8
P8417Group Properties article IDSymmetric_group
P244Library of Congress authority IDsh85131444
P12987LMFDB knowl IDgroup.symmetric
P2812MathWorld IDSymmetricGroup
P12888Metamath statement IDdf-symg
P6366Microsoft Academic ID (discontinued)128622974
P8189National Library of Israel J9U ID987007553676705171
P4215nLab IDsymmetric group
P3847Open Library subject IDsymmetric_groups
P10283OpenAlex IDC128622974
P6781ProofWiki IDDefinition:Symmetric_Group
P13591Yale LUX IDconcept/588eaf24-c020-4b35-b9d4-2d0a761a0c66

Why not click here or view trends?

log id: 4975803